
Formal vet

FORMAL VERIFICATION AND TESTING:
AN INTEGRATED APPROACH TO VALIDATING ADA PROGRAMS

Norman H. Coheri

SofTech, Inc.
One Sentry Parkway, Suife 6000

Blue Bell, Pennsylvania 19422-2310

NCohen@Ada20

Fication is the use of mathematical woof to con irm that a
program will behave as specified when it is executed. Formal verification
can produce a much higher level of confidence in a program than testing.
Nonetheless, formal verification requires large amounts of skill, human time,
and computer time, so it would be impractical to verify formally an entire
Ada program for a typical embedded computer applicaGion.

We propose an integrated set of tools called a validation environment to
support the validation of Ada programs by a combination of methods. The
validation environment exploits the Ada distinction between module interfaces
and module implementations to validate large Ada programs module by module.
The proposed validation environment is called the Modular Ada Validation
Environment, or MAVEN. MAVEN does not yet exist, nor have efforts begun to
construct it. Rather, MAVEN is our vision of the context in which Ada formal
verification should be applied. A more complete discussion of MAVEN can be
found in [1 I .

Our vision of MAVEN is based on several requirements that we have
identified for the validation of’ Ada programs. These requirements are based
or1 the recognition that Ada programs for mission-critical applications ere
large, that skilled software engineers a r e in short supply, that tile

construction of a verifier is an expensive undertaking, and that the use 0:’ a
verifier may be time consuming. Our requirements are as follows:

1. Formal proofs should not be based on the behavior of a particular
implementation.

2. It should be possible to validate a large program module by module.

3 . For typical mission-critical applications, verification will have to be
integrated with other forms of validation.

4. It should be easy to request the proof of certain critical properties
which, while they do not imply correctness of a module, significantly
raise our confidence in its reliability.

See [2] for a more complete discussion o f these requirements.

U.l.6.l

-...e..,--

?

0

When software engineers use the term "validation and verification," they
Usually do not have formal verification in mind. To avoid confusion, this
Paper U L ~ S the terms validation and verification in two distinct and precise
senses:

Verification is the use of formal proof, checked by machine, to
establish properties of a program's run-time behavior.

Validation is the process of increasing onels confidence in the
reliability of a program. Formal proof is one of many methods
for validating software.

Confusipn may also arise from our use of the term environmes. Ada
Programming Support Enviroriments (A P S E ' S) already exist, and have functions
that overlap those we propose for a validation environment. We do not
envision MAVEN a s a full A P S E or as a tool set independent of an A P S E .
Rather, we view MAVEN as an integrated tool set embedded within an A P S E . It
can be thought of as a tfsubenvironment.*l Many A P S E tools, including an Ada
compiler, may be used both for validation and f'or other purposes.

1 Integration of Multiple Validation Methods

One reason for validating programs module-by-module is so that different
modules can be validated in different ways. There are many software unit
validation methods, all of which have been used successfully in the past.
These include:

- formal proof generated with machine assistance and checkea by machine

- informal proof carried out by hand

- code walkthroughs

- unit testing

- acceptance of a software component as trustworthy, based on experience
using the same component in a previous system

It is not necessary for a project to choose one of these validation methods
for use throughout a program. Given the right framework, different methods
can be combined in an effective symbiotic relationship to ensure the quality
of a system.

While formal verification is the most effective means of ensuring
consistency between a program and its specifications, it has limitations,
These include the problem of validating that the specifications themselves
specify what the customer wants; and the cost -- in both machine time aiid the
time of skilled personnel -- of developing arid checking the proof'. l'tre
manufacture of Software, like any manufacturing process, entails a tradeoff

U. 1.6.2

between cost and level of quality assurance. In some programs there are
modules fo r which any form of validation less powerful than formal proof
would be socially irresponsible. Sometimes the same program also contains
many modules for which formal proof would be a wasteful misallocation of
resources.

Furthermore, there may be some modules that cannot be verified because
they use features of the language for which there are no proof rules.
Features may be excluded from the "verifiable subset" of Ada even if there
are occasional legitimate uses for such features. Such legitimate uses can
be isolated in modules that are validated by some means other than f'ormal
proof. In particular, low-level features of the Ada language are inherently
machine dependent and thus not characterized by proof rules. Low-level
features can be Isolated in interface modules, allowing the rest of a system
to be validated by formal proof.

Many factors combine to determine the most appropriate form of
validation for a module. The cost of formal proof must be compared with the
possible impact of an error in the module. Low-level, target-dependent
interface modules might best be validated by informal proof. For certain
hard-to-specify modules, for e ample a graphics display builder whose desired
output is specified pictorially, testing might be not only the cheapest, but
also the most reliable form of validation. For modules that are not
particularly critical, arid for which test drivers would be difficult to
write, code walkthroughs might be most appropriate. Software might simply be
trusted (until integration testing) if it has been extracted from a working
system in which it has functioned reliably.

To ensure complete coverage, different forms of validation cannot be
combined haphazardly. There must be a unifying discipline. One of the
functions envisioned for MAVEN is to provide such a discipline.

2 Validation Libraries

The Ada language was designed to facilitate the construction of' tiulje
programs. A pervasive theme in the design of the language is the division of
a program into units that can be understood individually yet checked f o r
consistency with each other. If this theme is extended from unit compilation
to unit validation, one unit of a program can be changed and revalidated
without revalidating the rest of the program. This is especially important
during program maintenance.

Module-by-module validation of a large program can be achieved in the
same way as module-by-module compilation. Compilation of an Ada program unit
consists not only of code generation, but also consistency checking. A
unit's syntactic specification is compiled before either the unit's body or
any external uses of the unit. This compilation puts information about the
syntactic spccification into a Ijjram library. Later, when either the
unit's body or an external use of theynit is compiled, this information is

B.l - 6 . 3

retrieved from the program library and used for compile-time consistency
checks.

The consistency checks that occur during compilation are limited to the
information found in a unit's syntactic specification, such as the number,
types, and modes of subprogram parameters. Except for this limitation,
however, they are analogous to the checks that occur during unit validation.
Just as a unit has a syntactic specification that is checked during
compilation, it has a semantic specification that is checked during
validation, Just as syntactic specifications are recorded in a program
library, semantic specifications are recorded in a M A V E N validation library.

Semantic specifications are textually embedded in Syntactic
specifications in the form of structured comments like those found in Anna
C31. This unifies the notions of syntactic and semantic specifications.
When MAVEN is directed to compile a specification, it invokes the Ada
compiler to place the syntactic specification in the program library. If no
compile-time errors are found, the semantic specification is then extracted
from the structured comments and added to the validation library.

2.1 Validation Order

To facilitate compile-time consistency checks, the Ada language
restricts tht order in which units may be compiled. M A V E N imposes analogous
restrictions 'm the order of' validation, Specifically, a module's semantic
specification must be entered into the validation library before the
implementation or any use of the module is validated, Then the
implementation and each use of the module may be validated in any order.
Validation of' the implementation establishes that the body fulfills the
semantic specif;cation. Validation of a use of the module involves assuming,
while validating the using module, that the semantic specification is
correctly implemented. This assumption is permitted as soon as the semantic
specification is entered into the validation library, even before the body
h a s been demonstrated to fulfill the semantic specification. (This is
analogous to the .;ompilation of a subprogram call after the subprogran
declaration has bet,: compiled but before the subprogram body has been
compiled.) It implies that validation of one unit can proceed considering
only the specifications of the units it invokes, without considering their
bodies. This is the essence of nodule-by-module validation.

0

Some program units may be validated by fiat. That is, after a code
walkthrough or simply on the basis of trust, a unit may simply be decreed to
be llvalidated." This still must be done explicitly, by a request to MAVEN,
and the usual validation order rules must be obeyed. In particular, a unit
may not be decreed to be validated before the specifications it is meant t o
fulfill have been entered into the program library.

B. 1 . 6 . 4

2.2 Revalidation Order

Just as the Ada language restricts compilation order, it imposes
recompilation requirements to ensure that consistency checks have always been
performed on the latest version of a program. If a syntactic specification
is recompiled, all consistency checks based on the old syntactic
specification are rendered invalid. The corresponding body and all uses of
the unit must then be recompiled so that the consistency checks may be
repeated with respect to the new syntactic specificatior..

MAVEN imposes analogous revalidation requirements. If a module's
semantic Specification is changed, both the implementation and all uses of'
the module must be revalidated if they have already been validated. This is
Televant during program development and program maintenance.

In program development, failure to validate a body may mean either that
the body does not correctly implement the corresponding logical specification
or that the logical specification itself is incomplete. In the first case,
the body can be corrected and validated. In the second case, the logical
specification must be modified and all other units using that logical
specification must be revalidated. This may require still further
modifications and revalidations.

In program maintenance, revalidation requirements indicate which parts
of a large program are potentially affected by a change. This can reduce or
eliminate the "ripple effect" typically resulting from a change to a working
program. All possible implications of the change will be flushed out by the
ensuing round of revalidations, assuming the revalidation is sufficientlv
thorough. (If the revalidation is by unit testing, this process amounts to
regression testing. Rather than blindly repeating a!l tests, however, we use
validation dependency relationships to identify the tests that might possiuly
have been affected by the change.)

A unit validated by fiat is subject to the same revalidation
requirements as any other unit, even if revalidation consists onl) of
reissuing tile decree by which the unit was originally validated. T r i i s
encourages software engineers to consider whether the original decree is
still valid given the new specifications. For example, it may be discovered
that an off-the-shelf package originally thought to be applicable to the
current application is inappropriate given the revised specifications.

2.3 Other Information in the Validation Library

A validation library contains information besides the seroantic
specifications of program units. A validation plan can be entered into the
library in advance, stipulating how a unit will b e validated once it is
written. The validation library also records which units have been
validated, and according to which validation plans.

--

B. I .6 .5
OCPlGINAL PAGE S
OF)OOR QUALITY

Each module may hive its own validation plan, The plan Specifies the
validation method applied to the unit (testing or formal proof, for example)
and the details of the validation criteria (which files contain the test
driver or test data, algorithms for evaluating test results, or which
Properties are to be proven, for example). A validation pian may specify
several rounds of validation, all of which must succeed for th? unit t o be
considered validated. For example, a plan may call for testing to find and
eliminate obvious errors, followed by formal proof to ensure the absence of'
more subtle errors. No one round of validation need provide complete
coverage of the unit's semantic specification. Some parts of a unit's
Semantic specification may be proven valid, some valiaated by testing, and
Some simply assumed to be valid, for example.

Besides allowing MAVEN to enforce validation and revalidation order
dependencies, the data kept in the validation library allows MAVEN tools to
generate reports on the progress of system validation to date. The reports
indicate which units have been validated and how rigorously. Duririt:
development, validation of units can be tracked and compared with schedbles.
When an error arises, information about the validation methods applied to
each unit and the properties validated for each unit can t-,elp pinpoint
suspect modules. Tire revalidation implications of a proposed change can
quickly be estimated.

3 Other Components of a Validation Environment

A verifier is only one of the tools that a validation environment should
provide. We have already mentioned the need for a validation library. This
implies the need for library management tools; incluc'ns tyre
report-generation tools diacussed above. Other tools can assist in L::#>
writing of specifications, the retrieval of reusable software from A large
catalogue, and the execution and analysis of tests.

Formal specifications are at the heart, of M A V E N , but they are difficult
for the typical software engineer t o write. Therefore MAVEN must s u p p l y
tools to help the software eilgiceer express h i s intent. These tools a r e
collectiiely called the specification-writer's assistant.. One component or'
the specification-writer's assistant is a knowledge-based too; that will

construct formal specifications based on a dialogue vJith the user. The
specification-writer's azsistant also includes an interpreter for a logic
programming language, similar to PROLOG bi;t providing the higher level of
data 3bstraction found in the Ada language. Tnis t oo l can be used for rapid
prototyping, to test specifications as they dre written.

The Ada language 1s meant to encourage the reuse of general-purpose
software components. This approach can only have a significant impact or1

software development costs if there is a large xorpiq of general-purpose
software avdilable for reuse; but such a large corpus pr.esents an awesome
informdtion-retrieval problem. While software retrieval is not usua'liy
+,..ought of as a qralidatjw problem, Pl.atek [4 1 has rioted that forlilal

B.1.6.h

Specifications and verification can form the basis of a retrieval tool. In
ri

addition to a validation library, MAVEN might include a catalogue of
general-purpose, reusable software components, all of which have been
formally specified. Given the semantic specification of a module required i n
the design, a MAVEN tool would search the catalogue for reusable components
that can be proven to have compatible specifications.

c
Because testing is the most frequently used validation method, MAVEN

contains tools scecifically supporting testing. These include tools to
generqte subprogram stubs, tools to generate test drivers, tools to generate
test data, and tools to analyze test results, All of these tools can base

validation library. For embedded applications, there should be saftware
simclation tool:, and tools providing interfaces with hardware mockups. A
related tool would administer tests automatically, based on the validation
plans found in ths validation library. Such a tooi codld also revalidate
those units validated entirely by testing, whenever revalidation i s
required. In essence, this automates regression testing.

. their outputs at least in part on the semantic specifications found in the

4 MAVEN and the Software Life Cycle

MAVEN tools are primarily conceraed with unit validation. This can l e a d
to the impression that the benefits of MAVEN are primarily reaped during the
unit validation stage of the life cycle. In fact, the use of MAVEN imposes a
discipline on software development and provides benefits throughout the
software life cycle. This section walks through a typical waterfall model o f '
tile life cycle and describes the impact of MAVEN on each stage.

4.1 Requirenents Analysis

The s !ec i f rca t ion-hr i ter I s a? si s t an t supports the formal express i o f . d 1'
requirements. Requirement j can be entered into a new MAVFN validation
library as the semantic specifications of the main program and of tdsks
dcclared in library packages. These formally stated requirements can be
checked for consistency using a verifier. They may later become the bdsis
foi- design verification and code verification. An integration-testing p l a n
may be derived from the formal requirements and stored in the validatiorl
library until soft.wa;e integration time.

4.2 Design

During high-level design, the modular decomposition of a system i s
determined and the specifications of each module arc written. Algorithms fur
top-level modules may also be written. MAVEN can play four roles at this
stage -- design documentation, recording of unit validation plans,
software-component retrieval, and design verification.

B.1.6.7

Design documentation consists of entering the semantic specifications
for each design module into the validation library. The specification-
Writer's assistant again comes in handy here. The semantic specifications
entered at this staye become the basis for later verification of module
bodies. The appropriate time to formulate unit validation plans is just
after unit semantic specifications have been identified. One of the
responsibilities of an Ada designer is to look for existing software that can
be incorporated in a design. As noted tarlier, formal specifications might
provide the basis for software automated software retrieval. The top-level
algorithms of a high-level design can expressed in executable Ada code
verifiable in the same way as lower level modules, Using orrly the
specifications of the main system modules (the main program and tasks
declared in library packages), it can be proven that the top-level algorithms
correctly implement the system specifications.

4 . 3 Unit Development

There is not a clear dividing line between design validation and unit
Validation. The same techniques applied to the top-level rnodules during
design validation are applied to lower-level modules during unit validation.
The unit validation plan placed in the validation library during system
design is retrieved and applied. A round of validation is repeated until it
is successful, and then the next round specified in the validation plan is
begun. The validation plan is restarted from the first round any time a
change is made to the unit, its semantic specification, or the semantic
specifications of the modules that the unit invokes.

Validation can uncover implicit assumptions that underlie the correct
functioning of a module, especially when validation is by formal
verification. Such assumptions must be added to a module's semantic
specifications if the module is to be verified. Thus the validation process
contributes to the development of complete and up-to-date specifications.

4.4 Integration Testing

The main impact of MAVEN on integration testing will be a drastic
reduction in integration problems. The Ada compiler will already have
checked all units for syntactic consistency with each other. MAVEN will
already have checked all units for consistency with their own semantic
specifications and the semantic specifications of the modules they invoke.
The few integration problems that remain will arise from incomplete module
specifications (for example, specifications that address functional
requirements but not performance requirements) and insufficiently rigorous
unit validation (for example, use of code walkthroughs as the sole means of
validation or the use of tests that do not provide adequate coverage).

U. 1.6.8

4.5 Maintenance

MAVEN will reduce the costs and risks of program maintenance. Both the
data MAVEN collects during program development and the discipline MAVEN
imposes on program modification will help confine the "ripple effect" of a
change. MAVEN will also keep documentation up to date after changes have
been made.

The most frequent problem associated with program maintenance is a
change that violates an implicit assumption upon which a different part of
the program depends. This problem is less likely to arise when using MAVEN
for two reasons. First, the validation process applied during program
development has served to make implicit assumptions explicit. The
documentation will warn the maintenance programmer right from the start that
certain changes must be disallowed unless further changes are made in other
modules. Second, if the semantic specification of a module is changed, MAVEN
will enforce the revalidation of all modules that may be affected by the
change. The revalidation dependencies alone clarify the potential impact of
a contetiplated change. The actual revalidation, which may follow the
original unit validation plan created during the initial design, leads the
maintenance programmer to discover which potential impacts are truly
significant, to revise the affected modules, and to validate the revisions.
If the revised modules can themselves affect other modules, revalidation of
these other modules will also be required. If sufficiently rigorous,
revalidation anticipates and averts all possible ripple effects,

MAVEN keeps documentation current during program maintenance in the same
way that it does so during initial development. Every time a unit's semantic
specification changes, MAVEN records the fact. This makes the next rourid of
maintenance easier.

5 Conclusions

We have described our vision of a Modular Ada Validation EnvirollniL:it,
MAVEN, to propose a context in which formal verification can fit into t t ~ c
industrial development of Ada software. While proof of correctness i s
unquestionably the most rigorous and effective form of validation, there are
contexts in which it is inappropriate. Nonetheless, formal proof cd I be
effectively combined with other validation methods to raise confidence 1 : i 2

program's reliability.

MAVEN offers software engineers a continuum of more and less rigorous
validation methods. This continuum makes a wider variety of validation
methods available t o a larger group and applicable to a greater number of
modules. MAVEN provides a unifying framework in which different validation
methcds may be applied to the same progr'am. By exposing software engineers
t o more rigorous methods than thcje they may be familiar with, MAVEN

B.1.6.9

-

. . , _ _ - . . .

encourages learning and promotes wider use of formal methods in the
situations where they are appropriate.

MAVEN includes components that are at and beyond the state of the art.
We do not propose that construction of MAVEN in its er.+Arety should start
today. Rather, MAVEN can serve as framework for the specification, design,
and construction of individual tools, including a verifier. If such tools
are viewed as eventual MAVEN components and if the MAVEN philosophy is kept
in mind when the tools are specified, then MAVEN can be assembled over a
number of years from independently developed components.

REFERENCES

1. Cohen, Norman H. MAVEN: The modular Ada verificatinn environment.
Proceedings, 3rd IDA Workshop on Ada Verification, Re5earch Triangle Park,
North Carolina, May 1986

- - -

2. Cohen, Norrrian H. The SofTech Ada Verification Project, AIAA/ACM/NASA/IEEE
Computers Aerospace_ 1 Conference, Long Beach, California, October 1985,
399-007

3. Luckham, David C., von Henke, Friedrich W . , Krieg-Brueckner, Bernd, and
Owe, Olaf. Anna, A Language for Annotating Ada Programs: Preliminar-
Reference Manual. Technical Report 84-261, Stanford Computer Systems
Laboratory, July 1984

4. Platek, Richard. Forrnal specification. Proceedings of the First IDA
Workshop on Formal Specification and Verification - - of Ada, Alexandria,
Virginia, March '985, paper C

- --

B . 1.6.10

